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Conductance through a one-dimensional correlated system:
Relation to persistent currents and the role of the contacts
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Based on a recent proposal@O.P. Sushkov, Phys. Rev. B64, 155319~2001!#, we relate the quantum con-
ductance through a sample in which electrons are strongly correlated to the persistent current of a large ring,
composed of the sample and a noninteracting lead. A scaling law in the lead length allows to extrapolate to a
well-defined value of the conductance, depending only on intrinsic properties of the sample and the nature of
the contacts between the sample and the lead. For strongly disordered samples, the conductance is found to be
enhanced by the interaction.
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Viewing quantum transport as a scattering problem1,2 gen-
erated a new understanding of the electronic conducta
This approach is able to explain a wealth of experimen
results3 in mesoscopic systems when electron-electron (e-e)
correlations are not important. To include these correlati
is nontrivial and remains one of the major challenges in
field ~see, e.g., Ref. 4!. While none of the proposals to ca
culate the conductance for a correlated system is well su
for numerical calculations5,6 or free of certain assumptions7

such an issue becomes crucial in present day’s research
ploring electronic transport through nanosystems~carbon
nanotubes,8 molecules,9 and point contacts10!, where the
Coulomb repulsion leads to important correlations.

Reservoirs and leads are key elements in the scatte
approach, and possess very clear physical meanings sinc
measurement is made with electrodes that behave as ele
reservoirs. In a good electrode, the electron densityne is
large, the ratior s between the Coulomb and the Fermi e
ergy is small, and hence thee-e interaction is negligible. In
contrast,ne in a nanosample can be very small, yielding
large ratior s and importante-e correlations.

The dimensionless conductanceg does not only depend
on the intrinsic properties of the sample, but also on the w
it is connected to the electrodes. The quality of the conta
is particularly important for correlated electrons. For a cle
Luttinger liquid attached to noninteracting leads through
flectionless contacts, it has been found11 that the interactions
do not influenceg. In the other extreme, if the contacts a
tunnel barriers, the interactions lead to the Coulo
blockade,12 thereby dominatingg. In carbon nanotubes, var
ous transport regimes are observed depending on the n
of the contacts.8

As shown by Kohn13 and Thouless,14 g is also related to
the sensitivity of the sample’s eigenstates to a change of
boundary conditions. This sensitivity can be tested by cl
ing a system to a ring and measuring the persistent curre
the response to an enclosed magnetic fluxf. At zero tem-
perature, the persistent current is given byJ52]E/]f,
whereE is the ground-state energy of the many-body syste
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Interactions play an important role forJ, and it is generally
accepted that they account for the large difference betw
experiments and one-particle calculations.15 There have been
various attempts7,16 to link J and g for an interacting ring.
However, the ring built from the sample itself does not co
tain any reservoirs in which energy relaxation can take pla
Negative zero-frequency conductivities occur,17 unlike in the
dissipative case in which we are interested here.

As pointed out in Refs. 5 and 10, at zero temperature,
only for the noninteracting case, but also for correlat
samples,g is given byut(EF)u2, the probability for an elec-
tron at the Fermi energyEF to be elastically transmitted
through the sample. Moreover, if one replaces the mas
electrodes~with negligible e-e correlations! used in a real
measurement by very long noninteracting one-dimensio
leads, one can expect that they have a similar effect.6 Sush-
kov recently proposed10 that ut(EF)u2 can be extracted from
the persistent current of a much larger ring, composed of
sample itself, together with a long lead closing the syste
This has the considerable advantage that a ground-state p
erty ~J! suffices to determineg. However, one needs theJ of
the combined system~sample plus lead!, and not the one of
the system alone as in previous works.7,13,14,16

In the following, we adapt the approach of Ref. 10
calculateg for one-dimensional interacting electrons usi
the density-matrix renormalization-group ~DMRG!
algorithm.18,19We check that a scaling law allows to extrap
late to an infinite lead, yieldingg as a property of the sampl
and the way it is connected to the lead. The nature of
contacts turns out to play a major role. Then, we extend
analysis to disordered samples, where we find that, simil
to the case of persistent currents,20 repulsive interactions
may increaseg for strong disorder.

We first present an alternative derivation of Sushko
result,10 pointing out the main assumptions, for the nonint
acting case. As depicted in the upper inset of Fig. 1,
consider a sample (S, hashed region! closed to a ring by a
noninteracting and disorder-free lead (L), and threaded by a
flux f. The total lengthL5LS1LL consists of the sample
©2003 The American Physical Society06-1
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length LS and the lead lengthLL . The one-particle eigen
states of the total system satisfy

det~ I 2MSML!50, ~1!

with the transfer matrices of the sample and the lead,

MS5
1

sinw S eia/sinu 2 icotu1cosw

i cotu1cosw e2 ia/sinu D ,

ML5eiFS eikLL 0

0 e2 ikLL
D , ~2!

respectively. Here,F52pf/f0 wheref0 is the flux quan-
tum. The scattering is characterized by the angleu, the phase
shift a, and the anglew ~equal top/2 if right-left symmetry
is respected!. These angles are functions ofk, the wave vec-
tor in the lead. The transmission amplitude is given byt
5eiasinu sinw. With Eq. ~2!, the quantizing condition~1!
can then be written as

cosF5
1

utu
cos~kL1da!, ~3!

with the relative phase shiftda5a2kLS. The persistent
current carried by a one-particle state~with energy e) is
j (f)52(]e/]k)(]f/]k)21. We work atF5p/2 and es-
tablish two crucial assumptions:~i! u](da)/]ku!L, ~ii !
]e/]k.\2k/m. The first one states that the Wigner tim
associated with the scattering region is negligible compa
with the time spent in the leads. Notice that we work with
relative Wigner timetW5(m/\2k)](da)/]k, that is, the dif-
ference between the delay time of the scattering region
that of a potential-free region having the same length. T
second assumption implies that the dispersion relation is
sentially unaffected by the scattering potential.

FIG. 1. Scaling of lnD with the total lengthL of the system,
showing a linear increase of lnD with 1/L for even LS512 @U
51 (d), U52 (j), U53 (m), U54 (l)], and a decrease fo
odd LS513 @U51 (s) andU52 (h)]. Lower inset: scaling for
unpolarized electrons within the Hubbard model (LS52, U51).
Upper inset: sketch of a ring consisting of the sample~hashed re-
gion! and a noninteracting lead threaded by a fluxf.
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The persistent current ofN noninteracting spinless fermi
ons ~for simplicity we takeN even! is given by21

J~F5p/2!5
e\

mL
kFut~kF!u. ~4!

Therewith, the conductance may be related to the ratio
J(F5p/2) to the persistent currentJ0 of a clean ring of
lengthL.10 This relation becomes exact in the limit of infinit
lead length when the above assumptions hold, and one

g5 lim
LL→`

S J~p/2!

J0~p/2!
D 2

. ~5!

With interaction,22 assumptions~i! and~ii ! always hold in
the largeL limit. Moreover, the use of Eq.~5! implies that
the one-particle states of the correlated system can stil
indexed by the lead wave vectorsk. That is, adding an infi-
nite noninteracting lead to a finite non-Fermi-liquid samp
restores the Fermi-liquid behavior. This assumption, wh
has been used in the perturbative calculation of trans
through Hubbard chains connected to reservoirs,23 requires
that the interactions arecompletelyswitched off in the one-
dimensional lead. Otherwise the Luttinger liquid behavio24

sets in, and one cannot obtain a result that is independe
the length of the auxiliary lead. In this, our approach diffe
from Sushkov’s, where the interactions in the lead are k
~within the Hartree-Fock approximation!.

Equation~5! allows to calculateg from the ground-state
energies. We do this for spinless fermions~polarized elec-
trons! in a ring described by the Hamiltonian

H52(
i 51

L

~ci
†ci 211ci 21

† ci !1(
i 52

LS

UFni2
1

2GFni 212
1

2G ,
~6!

whereci (ci
†) is the annihilation~creation! operator at sitei,

ni5ci
†ci is the number operator, and the flux-depend

boundary condition enters throughc05exp(iF)cL . The inter-
action is restricted to nearest neighbors and effective in
sample, but vanishing in the lead. It is equilibrated by
compensating potential that prevents the particles from e
tying the interacting region. The form of the Hamiltonia
allows to have particle-hole symmetry at half filling. W
work with a number of fermionsN5L/2, such that the mean
density is always 1/2 independently ofLS andLL .

Using the DMRG algorithm as described in Ref. 19, w
calculate the ground-state energiesE(F) at F50 and F
5p, to obtain the stiffnessD5(L/2)uE(0)2E(p)u ~which
is a measure forJ and simpler to calculate!.

An obvious requirement for Eq.~5! to be useful is that the
limit LL→` of the computed quantities is well define
Therefore, the first numerical step is to computeD for in-
creasingLL with given LS and U ~Fig. 1!. We find a very
clear asymptotic behavior, described by the scaling law

D~U,LS,LL!5D`~U,LS!expS C~U,LS!

L D , ~7!
6-2



e

n

er

ow
o

g

i
ar
ca

d
tin
ec
ar
n-

th
la

d

for
rder
ent
s

hes
ec-

yed
cts
os-
s. It
the
er-
to

est
e

the

-
n

th h
ts,
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where theintrinsic value D̀ is independentof the length of
the auxiliary lead. The sign ofC depends on the parity of th
number of sitesLS in the sample:C.0 for evenLS ~filled
symbols! andC,0 for oddLS ~open symbols!.26

From the flux dependence ofJ(F) for a long clean chain
containing a weak link,25 one gets the relation betwee
J(p/2) and D. The asymptotic valueD` is then used to
determine conductance~5! as g5sin2@(p/2)(D` /D`

0 )#,
whereD`

0 corresponds to the clean noninteracting ring.
The method also works for nonpolarized electrons~the

Hubbard model with on-site interaction!, and the size scaling
again allows to obtain intrinsic values~lower inset in Fig. 1!.
In the sequel we concentrate on the spinless case@Hamil-
tonian ~6!#, which contains the main features we are int
ested in, and allows to reach larger samples.

Having verified the consistency of our approach, we n
study the systems of interest. In Fig. 2, we present the c
ductance, as a function ofU, for various sample lengthsLS.
One observes a very clear even-odd asymmetry accordin
the parity ofLS. Samples with oddLS exhibit almost perfect
transmission up to the largest values ofU for which the
numerically reachableLL allows for a reliable scaling to the
limit LL→`, while an evenLS results in a decrease ofg(U)
already at weak interaction. For oddLS, particle-hole sym-
metry leads to degenerate sample configurations w
(LS61)/2 particles in the interacting region. This is simil
to a Coulomb blockade resonance. The traveling particle
thus become trapped for a long time (tW.0), consistent
with negativeC.26 Since the two configurations are couple
by processes which transfer particles through the interac
sample, one obtains perfect transmission. A similar eff
was found in the perturbative treatment of clean Hubb
chains.23 The recovery of this limiting case is another co
sistency check of our method.

On the other hand, an even number of sites implies
the transport of one particle through the sample takes p
via a virtual state with an energy of the order ofU above the
ground state. Thus, no resonance can be expected an
transmission, which is suppressed already by moderateU, is

FIG. 2. Conductanceg as a function of the interaction streng
U for different values of the sample lengthLS.
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a fast process withtW,0, consistent withC.0. In addi-
tion, increasingLS reducesg linearly for smallU, and expo-
nentially for U.2, consistent with the Mott-insulating
behavior.

The even-odd asymmetry and the perfect transmission
the odd case point to the importance of the contacts. In o
to investigate their role, we introduce a position-depend
interaction strengthUi which increases linearly from 0 to it
maximum valueU, inside the ‘‘contacts’’ of lengthLA ~see
inset of Fig. 3!. As shown in Fig. 3, in the case of evenLS
these smooth contacts increaseg, at constant effective length
Leff5LS2LA of the sample, and the conductance approac
the ideal situation of perfect transmission expected for refl
tionless contacts when we improve the smoothing.11 The per-
fect transmission at oddLS persists when the form of the
contacts preserves the right-left symmetry, but it is destro
by asymmetric contacts. The strong influence of the conta
is crucial when describing experiments since it seems imp
sible to connect a nanosample via reflectionless contact
also shows the limitation of other approaches relating
conductance of an interacting sample to its intrinsic prop
ties, without taking into account the way it is connected
the electrodes.

While clean interacting systems are of physical inter
~e.g., carbon nanotubes!, it is also important to consider th
generic case of disordered systems. To this end, we add
termW( i 51

LSv ini to Hamiltonian~6!, whereW is the disor-
der strength and thev i are distributed equally in
@21/2,1/2#. We have checked thatD scales withL as before
@Eq. ~7!#, ensuring a well-defined limiting value forg. The
even-odd dependence ofg disappears when disorder is intro
duced. The combined effect of disorder and interactions og
is shown in Fig. 4. In the ballistic regime~at W51 the mean
free path exceedsLS), the effect ofW is weak at smallU,

FIG. 3. Conductanceg as a function of the interaction strengt
U, for a fixedLeff512, and increasing smoothing of the contac
defined by the lengthLA ~see inset!. All data correspond to evenLS

with LA50 (j), LA54 (d), and LA510 (m). Using the same
smoothing length (LA510) but improving in the shape@a tanh
function ~thick solid line! instead of a linear increase (m)] helpsg
to approach the perfect value.
6-3
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and it becomes more pronounced at strongerU ~when the
disorder pins the Mott insulator, reinforcing the localizatio!.
At large W, g for individual samples exhibits peaks as
function of U whenever a charge reorganization occurs,

FIG. 4. Ensemble averages of lng as a function of the interac
tion atLS58, in the presence of disordersW51 (m), 5 (d), and
9 (l). The statistical errors are smaller than the symbol size.
dash-dotted line represents the clean case, the dotted lines rep
four individual samples atW59.
.

R

.

23530
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analogy to the persistent current calculated without
lead.20 Very remarkably, the ensemble average of lng is in-
creasedby a moderate repulsiveU, showing the nontrivial
interplay of disorder and interactions in a transport proble

In conclusion, starting from a recent proposal,10 we have
provided a well-defined procedure for calculating the co
ductanceg of interacting one-dimensional wires, and used
to investigate correlation and disorder effects. While the
teraction reducesg for spinless fermions in the presence
weak or moderate disorder, a moderate repulsive interac
increasesg at strong disorder. We also determined the cruc
role of the sample-to-lead contacts on the conductance.

After submission of our manuscript, a preprint by
Meden and U. Schollwo¨ck @published as Phys. Rev. B67,
193303~2003!# appeared which uses an approach similar
ours. Their comparison with a numerical many-body Gre
function technique for the conductance at not too strong
teraction supports the validity of our results.
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sions, P. Schmitteckert and Ph. Brune for their DMRG p
grams, and V. Meden and U. Schollwo¨ck for helpful com-
ments. R.A.M. acknowledges the financial support from
European Union’s Human Potential Program~Contract No.
HPRN-CT-2000-00144!. R.A.J. and D.W. thank the INT a
the University of Washington for its hospitality and suppo
during completion of this work.

e
sent
W.

ard,

ev.

he
1R. Landauer, IBM J. Res. Dev.1, 223 ~1957!.
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